

USN 15MAT41

Fourth Semester B.E. Degree Examination, June/July 2018 **Engineering Mathematics – IV**

Time: 3 hrs. Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module. 2. Use of statistical tables is permitted.

- a. Use Taylor's series method to find $\frac{\text{Module-1}}{\text{y at } \text{x} = 1.1}$, considering terms upto third degree given that $\frac{dy}{dx} = x + y$ and y(1) = 0. (05 Marks)
 - b. Using Runge-Kutta method, find y(0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$; y(0) = 1, taking
 - c. Given $\frac{dy}{dx} = x^2 y$, y(0) = 1 and the values y(0.1) = 0.90516, y(0.2) = 0.82127y(0.3) = 0.74918, evaluate y(0.4), using Adams-Bashforth method. (06 Marks)

a. Using Euler's modified method, find y(0.1) given $\frac{dy}{dx} = x - y^2$, y(0) = 1, taking h = 0.1.

- b. Solve $\frac{dy}{dx} = xy$; y(1) = 2, find the approximate solution at x = 12, using Runge-Kutta
- c. Solve $\frac{dy}{dy} = x y^2$ with the following data y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762, compute y at x = 0.8, using Milne's method. (06 Marks)

- a. Using Runge-Kutta method of order four, solve y'' = y + xy', y(0) = 1, y'(0) = 0 to find (05 Marks)
 - b. Express the polynomial $2x^3 x^2 3x + 2$ in terms of Legendre polynomials. (05 Marks)
 - c. If α and β are two distinct roots of $J_n(x)=0$ then prove that $\int x \, J_n(\alpha x) J_n(\beta x) dx=0$, if $\alpha \neq \beta$. (06 Marks)

OR

a. Given y'' = 1 + y'; y(0) = 1, y'(0) = 1, compute y(0.4) for the following data, using Milne's predictor-corrector method.

$$y(0.1) = 1.1103$$
 $y(0.2) = 1.2427$ $y(0.3) = 1.399$ $y'(0.1) = 1.2103$ $y'(0.2) = 1.4427$ $y'(0.3) = 1.699$.

b. Prove that $J_{V_2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.

- (05 Marks) (05 Marks)
- c. Derive Rodrigue's formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 1)^n].$ (06 Marks)

Derive Cauchy-Riemann equations in polar form.

(05 Marks)

Evaluate $\oint \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$ where C is the circle |z| = 3, using Cauchy's residue theorem.

(05 Marks)

Find the bilinear transformation which maps $z = \infty$, i, 0 on to w = 0, i, ∞ .

(06 Marks)

State and prove Cauchy's integral formula. 6

(05 Marks)

- If $u = \frac{\sin 2x}{\cosh 2y + \cos 2x}$, find the corresponding analytic function f(z) = u + iv. (05 Marks)
- Discuss the transformation $w = z^2$.

(06 Marks)

Module-4

a. Derive mean and standard deviation of the binomial distribution.

(05 Marks)

- b. If the probability that an individual will suffer a bad reaction from an injection of a given serum is 0.001, determine the probability that out of 2000 individual (i) exactly 3 (ii) more (05 Marks) than 2 individuals will suffer a bad reaction.
- The joint probability distribution for two random variables X and Y is as follows:

Y	-3	-2	4
$X \setminus$			
1	0.1	0.2	0.2
3	0.3	0.1	0.1

Determine: i) Marginal distribution of X and Y

ii) Covariance of X and Y

iii) Correlation of X and Y

(06 Marks)

OR

Derive mean and standard deviation of exponential distribution.

- In an examination 7% of students score less than 35% marks and 89% of students score less than 60% marks. Find the mean and standard deviation if the marks are normally distributed. Given P(0 < z < 1.2263) = 0.39 and P(0 < z < 1.14757) = 0.43.
- The joint probability distribution of two random variables X and Y is as follows:

XX	-4	2	7
1	1/8	1/4	1/8
5	1/4	1/8	1/8

Compute: i) E(X) and E(Y) ii) E(XY)

iii) COV(X, Y)

(06 Marks)

Module-5

- Explain the terms: i) Null hypothesis (ii) Type I and Type II errors. (05 Marks)
 - The nine items of a sample have the values 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean (05 Marks) of these differ significantly from the assumed mean of 47.5?
 - Given the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ then show that A is a regular stochastic matrix. (06 Marks)

- A die was thrown 9000 times and of these 3220 yielded a 3 or 4, can the die be regarded as 10 (05 Marks)
 - (05 Marks) b. Explain: 1) Transient state ii) Absorbing state iii) Recurrent state
 - A student's study habits are as follows. If he studies one night, he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night. In the long run, how often does he study? (06 Marks)